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ABSTRACT 

 
The Objective Force requirements of responsiveness, 
agility and versatility call for digitized graphical decision 
support interfaces that automate or otherwise help in 
various reasoning tasks, including reasoning with visual 
and diagrammatic representations that are ubiquitous in 
Army situation understanding, planning and plan 
monitoring. In earlier papers, we described a 
diagrammatic reasoning architecture, and demonstrated 
the approach for instances of maneuver recognition and 
information fusion for entity-reidentification problems.  
The current paper characterizes the computational 
properties of the core perception and path-finding 
algorithms that are an important part of the technology’s 
application for a class of fusion problems. This analysis is 
important since the practicality of automating 
diagrammatic reasoning for Army applications depends 
on developing algorithms with manageable complexity.  
 

1. INTRODUCTION 
 

Reasoning with visual representations consisting of 
terrain maps with an overlay of diagrammatic elements is 
ubiquitous in Army situation understanding, planning and 
plan monitoring. Diagrams are overlaid on top of terrain 
maps, and they represent information using a combination 
of iconic and spatially veridical elements.  The overall 
problem solving process is a sequence of steps each of 
which is one of three types: perception on the diagram, in 
which information about the spatial properties of or 
relations between diagrammatic objects is obtained; 
inference, making use of currently available symbolic 
information including information obtained by 
perception; and actions on the diagram, in which 
diagrammatic elements are added, deleted or modified to 
satisfy certain constraints, such as “find a path that goes 
from point A to point B, while avoiding region C.” 
Automating or semi-automating such reasoning tasks is 
essential if the ambitious goals of Army Transformation 
based on information dominance are to be achieved.   
 

We have been experimenting with an architecture 
[Chandrasekaran, et al, 2002; Chandrasekaran, et al, 
2004] for automated reasoning with diagrams and applied 
it to example problems in maneuver recognition and 
information fusion for entity reidentification. In this 
paper, we present the algorithms and their computational 

 

Fig 1. A diagram in ASAS. 
complexities for the set of perceptual and action routines 
that we have found useful in spatial reasoning tasks 
involved in certain types of information fusion. This 
analysis is important since the practicality of automating 
diagrammatic reasoning for Army applications depends 
on developing algorithms with manageable complexity. 

 
2. DIAGRAMS IN A FUSION EXAMPLE 

 
The entity reidentification problem arises in systems 

such as U.S. Army’s All-Source Analysis System 
(ASAS). The prototypical task can be characterized as 
follows. A report is received about the sighting of an 
entity of interest, along with the time, location and partial 
identity information, such as that it was a tank, or tank of 
a given type, etc. The task is to decide if the newly 
sighted object is one of the objects in the database, 
sighted and identified earlier, or a new object. The overall 
reasoning process is modeled as abductive inference 
[Josephson & Josephson, 1996]. The reasoning system 
has a number of diagrammatic subtasks. Fig 1 illustrates 
some of them. The three regions are marked as no-go 
areas for the vehicle type of interest. The newly sighted 
vehicle is the small circle at the bottom right of the figure, 
and the database has identified two previously sighted and 
identified vehicles, the two small circles at bottom left 
and top of the figure, as being potentially the same as the 
newly sighted vehicle. The problem solver asked the 
diagrammatic reasoner to identify a possible path from the 
new sighting location to the vehicle at the top. The action 
component of the diagrammatic reasoner found a path 
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between the two no-go regions. The two elliptical regions 
marked Sensor1 and Sensor2 are known sensor fields.  
The problem solver wants to know if the path intersects 
any of the sensor fields. The diagrammatic reasoner 
replies, as we would, that the path intersects Sensor1, but 
not Sensor2. Then the problem solver asks (not shown in 
Fig 1) if the path could be modified so as to avoid the 
field Sensor1 but still go between the two no-go regions. 
The relevant path modification algorithm finds that this is 
not possible. Another common example of perception is 
that of emergent objects. For instance, when two curves 
intersect, a new point object, the intersection point, is 
created. This may be of significance in some domain, e.g., 
that point might be an intersection between two routes, 
providing alternatives for path planning. Posing a 
sequence of such questions to, and making use of the 
answers from, the diagrammatic component, the problem 
solver eventually decides that the new sighting could not 
correspond to the one at the top.   
 

3. DIAGRAMMATIC REPRESENTATION 
 

It is important to distinguish between a diagram and a 
general image. A diagram is first and foremost a 
representation, i.e., it is not an image of a natural object, 
but one whose objects are intended to represent 
information to support some reasoning task. A diagram 
differs from linguistic-symbolic representations in that the 
spatial properties of and relations between diagrammatic 
objects may be used to represent information in the 
domain.   
 

A Diagram is a pair (I, DDS) where I is the image, 
defined as a specification – implicit or explicit – of 
intensity values for points in the relevant regions of 2D 
space, and DDS is the Diagram Data Structure, which is 
a list of labels for the diagrammatic objects in the image; 
associated with each object label is a specification of the 
subset of I that corresponds to the object. A 
diagrammatic object can be one of three types: point, 
curve, and region. Point objects only have location (no 
spatial extent), curve objects only have axial specification 
(no thickness), and region objects have location and 
spatial extent. The labels are internal to DDS. External 
labels such as A, B, etc. in Fig 2 are additional features of 
the objects that may be associated with them. I is any 
description from which a specification of intensity values 
for the relevant points in the 2D space can be obtained. In 
our work we represent curve objects by a sequence of 
points or line segments, and regions by the perimeter 
closed curves, also as line segments.   

 
Diagrams are constructed by placing diagrammatic 

objects on a 2D surface in specific configurations to 
represent specific information. DDS will initially consist 
of the labels of objects so placed and their spatial 
specifications.  

A perceptual routine1 (PR) takes a specified number 
of diagrammatic objects in the diagram and returns a 
perception, which may be an object, a property or a 
relation. An action routine (AR) creates, deletes or 
modifies objects in the diagram so as to satisfy given 
constraints, some of which may be perceptual.  
 

There are no finite sets of these routines that suffice 
for all of diagrammatic reasoning, but they can be 
partially ordered with respect to complexity and domain-
specificity, such that routines later in the partial order 
make use of routines earlier. 
 
 

 

 

 

 

 

 

 

 

Object, Label A, type: 
Curve, EndPoint1:D, 
EndPoint2:E 

Object, Label C, type: 
Region Periphery: F 

Object, Label F,  
type: Curve 
Object, Label D,  
type: Point 

Object, Label E,  
type: Point I 

Object, Label C,  
type: Point

DDS 

Fig. 2.  A DDS for a simple diagram composed of a point, 
a curve and a region. There are other objects: 

distinguished points such as end points, the closed curve 
defining the periphery of the region, etc. 

As objects in DDS are created, deleted or modified, 
new objects might emerge, objects may change their 
spatial extents, and existing objects might be lost. PRs 
will make these determinations and DDS will be updated 
to reflect these changes. DDS mediates the interaction of 
the problem solver with I. For example, given a question 
such as “Is A to the left of C?,” the information in DDS is 
used to identify the image descriptions for A and C as 
arguments for the PR Leftof(X,Y). In principle, the 
same image I might correspond to different DDS’s 
depending on which subsets are organized and recognized 
as objects, such as in the well-known example of a figure 
that might be perceived as a wine glass or profiles of two 
faces.  
 
 
 

                                                           
1 We call them perceptual routines, rather than the more 
common and specific visual routines, because our long-
term goal is to extend the notion of the cognitive state to 
multiple perceptual modalities, and vision is just one 
modality. 

 



4.   PERCEPTUAL ROUTINES (PRs)  
 

PRs can be categorized into two classes, emergent 
object recognition, and property/relation extraction. The 
first includes domain-independent PRs that identify point, 
curve and region objects that are created or lost when a 
configuration of diagrammatic objects is specified or 
modified. The PRs of the second class produce symbolic 
descriptions belonging to one of three kinds: (i) specified 
properties of specified objects (e.g., curve C has length of 
m units), (ii) relations between objects (e.g., point P is in 
region R, curve C1 is a segment of curve C2, object O1 is 
to the left of object O2, values of the angles made by 
intersection of curves C1 and C2), and (iii) symbols that 
name an object or a configuration of objects as an 
instance of a class, such as a triangle or a telephone. 

 
The PRs of the second class come in different 

degrees of domain specificity. Properties such as length of 
curve, area of a region, and quantitative and qualitative 
(right, acute, obtuse, etc.) values of angles made by 
intersections of curves are very general, as are 
subsumption relations between objects, such as that curve 
C1 is a segment of curve C2. Relations such as 
Insideof(A, B), Touches(A, B), and Leftof(A, B) 
are also quite general.  PRs that recognize that a curve is a 
straight line, a closed curve is a triangle, etc., are useful 
for reasoning in Euclidean geometry, along with relations 
such as Parallel(Line1, Line2). The PRs of the second 
class are open-ended in the sense that increasingly 
domain-specific perceptions may be conceived: e.g., an L-
shaped region, Half-way-between(Point A, Point B). 
Our goal for the current set of PRs is what appears to be a 
useful general set, with the option for additional special 
purpose routines later on. The following is a list of PRs of 
different types that we have currently identified and 
implemented as being generally useful.   

 
Emergent Object Recognition Routines. These PRs 

return one or more objects after creating or recognizing 
them. Examples of such routines are finding intersection-
points when curve and/or region objects intersect, region 
when a curve closes on itself, new regions when regions 
intersect, new regions when a curve intersects with a 
region, extracting distinguished points on a curve (such as 
end points) or in a region, extracting distinguished 
segments of a curve (such as those created when two 
curves intersect), extracting periphery of a region as a 
closed curve. Reverse operations are included – such as 
when a curve is removed, certain region objects will no 
longer exist and need to be removed.  
 

We have implemented the intersection routine using 
sweep-line algorithm [Bentley & Ottmann, 1979] that 
takes as input a number of curve and region objects and 
computes all the intersection points in O((n+k)*log(n)) 
time (see Intersect in Table 1). Due to an 

intersection, a number of emergent objects are created. 
For e.g., when two curves intersect, four sub-curves and 
an intersection point emerge. However, computing all the 
emergent curves and regions is computationally too 
expensive, so we restrict ourselves to computing only the 
emergent first order objects – i.e., objects that do not have 
other emergent objects of the same type as subparts, or 
objects specifically requested by the problem solver.  

 
Object Property Extraction Routines. These 

routines might return a numerical value as in 
Length(Curve C), or a boolean as in case of 
Closed(Curve C). Length(Curve C) computes the 
length of C by computing the sum of Euclidean distances 
between each consecutive pair of points. Area(Region R) 
computes the signed area of R, which is assumed to be an 
arbitrary non-self-intersecting polygon with n vertices, 
using the formula: 

( )( mod ) 1 ( mod ) 1
1

1
2

n

i i n i n i
i

Area x y x y+ +
=

= −∑  

where ( ),i ix y  is the coordinate of the ith vertex. 
Counter-Clock-Wise(Region R) checks whether R 
is oriented in counterclockwise direction by checking 
whether the area of R is positive. Angle(Point P1, Point 
P2, Point P3) computes the angle between the line 
segments P1P2 and P2P3 at point P2. 
Straightline(Curve C) checks whether all the points 
on C are collinear or not. Closed(Curve C) checks 
whether C intersects itself by using the Intersect routine. 
Additional property extraction routines can be added as 
needed.  

 
Relational Perception Routines. These routines 

return a boolean value after checking whether one or 
more objects satisfy a certain relation. Insideof(Point 
P, Region R) checks whether P lies inside R or not. In 
order to compute whether a given object of any type lies 
within a given region or not, we check for every point of 
that object using the routine Insideof. Outsideof is 
implemented similarly.  
 

Leftof(Point P1, Point P2, POV) checks whether P1 
is to the left of P2 or not with respect to the given point of 
view POV. The point of view specifies the direction 
towards which the observer is faced, in terms of an angle 
with respect to a fixed horizontal axis. Rightof(Point 
P1, Point P2, POV), Above(Point P1, Point P2, POV), 
Below(Point P1, Point P2, POV) can be computed 
similarly. Topof(Region R1, Region R2) is required in 
domains like the Blocks World where one block might be 
on top of another block. In such cases, we would consider 
two blocks as regions R1, R2, and infer that R1 is on top of 
R2 if R1 and R2 touch each other at more than one point 
and R1 is above R2 with respect to the vertical point of 
view. 

 



Table 1.  Selected Perceptual Routines and Their Computational Complexities 
 

Class PR Input Output Computational complexity PRs used 
Distance Point P1,  

Point P2

A real 
number 

O(1) - 

 
Angle 

Point P1, 
Point P2, 
Point P3

A real 
number 

O(1)  
- 

Area Region R A real 
number 

O(n) 
n = # segments in R 

- 

 
 
 
Quantitative  
PRs 

Length Curve C A real 
number 

O(n) 
n = # segments in C 

Distance 

StraightLine Curve C A boolean O(n) 
n = # segments in C 

- 

Closed Curve C A boolean O((n+k)*log(n)) 
n = # segments in C, k = # intersections 

Intersect 

Counter-
Clock-Wise 

Region R A boolean O(n) 
n = # segments in R 

Area 

 
Leftof 

Point P1, 
Point P2, 
Point of 
View 

 
A boolean 

 
O(1) 

 
- 

 
Rightof 

Point P1, 
Point P2, 
Point of 
View 

 
A boolean 

 
O(1) 

 
Leftof 

 
Above 

Point P1, 
Point P2, 
Point of 
View 

 
A boolean 

 
O(1) 

 
- 

 
Below 

Point P1, 
Point P2, 
Point of 
View 

 
A boolean 

 
O(1) 

 
Above 

On Point P, 
Curve C 

A boolean O(n) 
n = # segments in C 

- 

Touches Object O1, 
Object O2

A boolean O(n1*n2) 
n1 =  # segments in O1, n2 =  # segments in O2

On 

Topof Region R1, 
Region R2

A boolean O(n1*n2) 
n1 =  # segments in R1, n2 =  # segments in R2

Touches, 
Above 

Insideof Point P, 
Region R 

A boolean O(n) 
n =  # segments in R 

- 

Outsideof Point P, 
Region R 

A boolean O(n) 
n =  # segments in R 

Insideof 

Subcurveof Curve C1, 
Curve C2

A boolean O(n1*n2) 
n1 =  # segments in C1, n2 =  # segments in C2

On 

 
Subregionof 

Region R1, 
Region R2

A boolean O(n1*n2) 
n1 =  # segments in R1, n2 =  # segments in R2

Insideof, 
Intersect 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Qualitative  
PRs 

Parallel Curve C1, 
Curve C2

A boolean O(n) 
n = # points in C1 or C2

- 

 
 
 
 
 
 
 

 



Table 1 continued. 
 

Class PR Input Output Computational complexity PRs used 
 
ScanPath 

Curve C, 
Diagram D, 
Relation S 

Object O1, 
Object O2, 
…  
Object Or

 
O(n*m) 
n = # segments in C, m = # objects in D 

 
PR for 
extracting 
relation S 

 
 
 
 
Object  
Recognition 
PRs 

 
 
 
 
Intersect 

Curve C1, 
Curve C2,  
…  
Curve Cr, 
Region R1, 
Region R2, 
… 
Region Rt

Point P1,  
…  
Point Ps, 
Curve C1, 
… 
Curve Cp, 
Region R1, 
… 
Region Rq

 
 
O((n+k)*log(n)) 

r t

i j
i=1 j=1

n #  segments in C #  segments in R= +∑ ∑
k = # intersections 

 
 
 
 
- 

 
 
 

Table 2.  Selected Action Routines and Their Computational Complexities 
 

AR Input Output Computational complexity PRs/ARs used 
Translate Object O,  

Real number t 
Object O’ O(n) 

n = # points in the input object 
- 

 
Rotate 

Object O,  
Real numbers  
(x, y, θ) 

 
Object O’ 

O(n) 
n = # points in the input object 

- 

Medial Polygon, 
Polygon Vertices 

Medial Axis O(n*log(n)) 
n = # sampled points in the input polygons 

- 

 
 
PathFinder 

Polygon, 
Polygon 
Vertices,  
Start Pt,  
End Pt 

 
O(2k) Paths, 
Path 
Lengths 

 
O(n2+kk) 
n = # sampled points in the input polygons 
k = # polygons (k<<n) 

 
 
Medial 

 
 
Homotopic 

Path1,  
Path2,  
Point P1,  
Point P2, 
… 
Point Pn

 
 
A boolean 

 
O(n*p) 
n = # input points 

2

i
i=1

p #  segments in Path=∑  

 
 
Insideof 

ModifyPath_ 
to_avoid_ 
obstacles 

Path,  
Diagram OldD, 
Diagram NewD  

O(2k) Paths, 
Path 
Lengths 

O(n2+kk) 
n = # sampled points in the input polygons 
k = # polygons (k<<n) 
 

 
PathFinder, 
Homotopic 

 
ModifyPath_ 
to_pass_ 
through_ 
given_points 

Path,  
Diagram D,  
Point P1,  
Point P2, 
… 
Point Pr

 
O(2k) Paths, 
Path 
Lengths 

 
O(r*(n2+kk)) 
n = # sampled points in the input polygons 
k = # polygons (k<<n) 
r = # points to pass through 

 
 
PathFinder, 
Homotopic 

 
 
ShortenPath 

Path,  
Point P1,  
Point P2, 
… 
Point Pn

 
 
ShorterPath 

O(n*p*r) 
n = # input points 
p = # segments in the input path 
r = # iterations desired/required for convergence 

 
 
- 

 

 



On(Point P, Curve C) checks whether P lies on C or 
not. It is noteworthy that the point might not necessarily 
be one of the points describing the curve but still lie on 
the curve by lying on one of its segments. On(Curve C1, 
Curve C2) is computed by checking whether each segment 
of C1 lies on C2 or not. Subcurveof(Curve C1, Curve 
C2) checks whether C1 is a sub-curve of C2 or not. For C1 
to be a sub-curve of C2, each segment of C1 must lie on C2 
and C1 has to be smaller in length than C2. So we check 
whether there exists a segment of C1 that does not lie on 
C2 using PR On to infer the result.  
 

Subregionof(Region R1, Region R2) computes 
whether R1 is a sub-region of R2 or not. In order for R1 to 
be a sub-region of R2, R1 has to be inside R2. If some 
points or segments belonging to the periphery of R1 lie on 
the periphery of R2, still we consider R1 to be a sub-region 
of R2. Touches(Object O1, Object O2) checks whether 
objects O1, O2 touch each other or not. We consider O1 
and O2 to touch each other if they have at least one point 
in common on the periphery but no point of one object 
lies inside the other object.  Subsumption relations are 
especially important and useful to keep track of as objects 
emerge or vanish.   

 
Abstractions of groups of objects into higher level 
objects. Objects may be clustered hierarchically into 
groups, such that different object abstractions emerge at 
different levels. For example, some events in military and 
meteorology domains, are characterized by a large 
number of individual moving elements, either in pursuit 
of an organized activity (as in military operations) in 
groups at different levels of abstraction, or subject to 
underlying physical forces (as in weather phenomena). 
Visualizing and reasoning about happenings in such 
domains are often facilitated by abstracting the mass of 
data into diagrams of group motions, and overlaying them 
on diagrams that abstract static features, like terrain, into 
regions and curves. Constructing such diagrams of 
motions at multiple levels of abstraction calls for 
generating multiple hierarchical grouping hypotheses at 
each sampled time instant, then choosing the best 
grouping hypothesis consistent across time instants, and 
hence following the groups to produce spatial 
representations of the spatiotemporal motions. For a 
detailed discussion and implementation of such a high 
level PR, the reader is referred to [Banerjee, et al, 2003; 
Chandrasekaran, et al, 2002]. Other PRs in this class 
might include generating associations between objects 
based on properties like those of Gestalt principles. 

 
Domain-specificity. Perceptions may be domain-

specific because they are of interest only in some 
domains, e.g., “an L-shaped region.” They may also be 
domain-specific in that they combine pure spatial 
perception with domain-specific, but non-spatial, 
knowledge. For example, in a military application, a 

curve representing the motion of a unit towards a region 
might be interpreted as an attack, but that interpretation 
involves combining domain-independent spatial 
perceptions – such as extending the line of motion and 
noting that it intersects with the region – with non-spatial 
domain knowledge – such as that the curve represents the 
motion of a military unit, that the region’s identity is as a 
military target belonging to a side that is the enemy of the 
unit that is moving, etc. In our current implementation, it 
is the task of the problem solver to combine appropriately 
the domain-independent perceptions with domain-specific 
knowledge to arrive at such conclusions, but in 
application-dependent implementations of the 
architecture, some of these perceptions might be added to 
the set of PRs.    

 
5.   ACTION ROUTINES (ARs) 

 
The problem solving process may modify the 

diagram – create, destroy, or modify objects. Typically, 
the task – the reverse of perception in some sense – 
involves creating the diagram such that the shapes of the 
objects in it satisfy a symbolically stated constraint, such 
as “add a curve from point A to point B that goes midway 
between regions R1 and R2,” and “modify the object O1 
such that point P in O1 touches point Q in object O2.” 
Again similar to PRs, ARs can vary in generality. 
Deleting named objects that exist in the diagram, and 
adding objects with given spatial specifications, e.g., Add 
point at coordinate, Add curve <equation>, etc., are quite 
straightforward. Our ARs include translation and rotation 
of named objects for specified translation and rotation 
parameters.  

 
The military domain calls for a special type of action 

routine that constructs paths satisfying constraints. The 
entity-reidentification example calls for ARs that find one 
or more representative paths from point A to point B, 
such that intersections with a given set of objects are 
avoided. A representative path is a curve object and has 
the right qualitative properties (e.g. avoid specific 
regions), but is a representative of a class of paths with 
those qualitative properties, members of which may differ 
in various quantitative dimensions, such as length. Given 
a set of regions in a boundary of interest, the medial axis 
of the boundary considering the regions as holes in it can 
be computed in O(n*log(n)) time where n is the total 
number of sampled points in the boundary and the regions 
[Kirkpatrick, 1979]. It can be easily shown that at least 
one path from any homotopy class can be derived from 
the medial axis. Since the number of homotopy classes is 
infinite, we extract only those paths from the medial axis 
that do not intersect themselves, and consider them as 
representative paths (see Fig 3). There will be at most 
O(2k) representative paths where k is the number of 
regions. Our Medial and PathFinder ARs compute 
the medial axis and the representative paths respectively. 

 



For their computational complexities, see Table 2. Two 
paths are considered homotopic if one can be 
continuously deformed into the other without crossing 
any obstacle. The AR Homotopic computes whether 
two given paths, with the same endpoints, are homotopic 
to each other or not by checking whether there exists any 
point inside the region(s) formed by the paths. 
 

Fig 3. Path generation using AR Medial. 
 

Rs can also modify given paths to satisfy certain 
con

The set of ARs also includes routines that adjust a 
path

Extending lines indefinitely in certain directions so 
that

nderspecification of spatial properties of objects.  
Mor

6.   RELATED WORK  
 

llman [Ullman, 1984] proposed, there exists a fixed 
set 

ayhoe [Hayhoe, 2000] argues that vision can be 
thought of as the ongoing execution of task-specific 

 

A
straints, for e.g., a given path might need to be 

modified because of detection of a new obstacle (region 
object) along its way, or a given path might be required to 
pass through certain given points, and so on. We have 
implemented routines that perform certain tasks useful for 
the information fusion domain. The AR 
ModifyPath_to_avoid_obstacles modifies a 
path to avoid newly found obstacles, by extracting all the 
representative paths from the new set of obstacles (old set 
of obstacles and the newly found obstacles) and outputs 
those representative paths which are homotopic to the 
given path with respect to the old set of obstacles. The AR 
ModifyPath_to_pass_through_given_points 
modifies a path to pass through a sequence of points, by 
considering each consecutive pair of points in the 
sequence as the starting point and the end point and 
extracting all representative paths between them, and then 
concatenating the paths to end up with at most O(r*2k) 
paths, where k is the number of obstacles and r is the 
number of points in the sequence. The AR outputs only 
those paths that are homotopic to the given path. Table 2 
gives the computational complexities of these routines. It 
is noteworthy that these ARs are not primitive ARs, rather 
they are built using primitive ARs such as Medial and 
PathFinder. 
 

 in a homotopy class to be shorter, longer, etc., in 
various ways. One useful AR is shortening a given path. 
Finding the shortest path in a given homotopy class is a 
very well-defined problem in computational geometry. In 

our case, we are interested not always in the shortest path 
but also in the shorter versions of a path in a given 
homotopy class as that saves computational costs in many 
cases while in some other cases, we just need a smooth 
path that is close to being shortest but not an absolute 
shortest as the shortest path might have sharp turns 
through which it is sometimes difficult to navigate. The 
AR ShortenPath shortens a path gradually until the 
absolute shortest configuration is reached. After each 
iteration, the algorithm produces a path shorter than the 
one after the last iteration. 
 

 a PR can decide if the extended line will intersect 
with an object of interest is one that we need in our 
domain. Other researchers have found specific sets of 
ARs that are useful for their tasks, such as the AR in 
[Lindsay, 1998], “Make a circle object that passes through 
points A, B, and C.” An AR that we have not yet used, 
but we think would be especially valuable, is one that 
changes a region object into a point object and vice versa 
as the resolution level changes in problem solving, such 
as a city appearing as a point in a national map, while it 
appears as a region in a state map.   

 
U
e generally, each of the PRs can be reversed and a 

corresponding AR imagined.  For example, corresponding 
to the PR Insideof(R1, R2) is the AR, “Make region R2 
such that Insideof(R1,R2) is true,” (assuming region R1 
exists); and corresponding to Length(curve C1) is the 
AR, “Make curve C1 such that Length(C1) < 5 units.” In 
most such instances, the spatial specification of the object 
being created or modified is radically under-defined.  
Depending on the situation, random choices may be 
made, or certain rules about creation of objects can be 
followed. However, the problem solver needs to keep 
track of the fact that the reasoning system is not 
committed to all the spatial specification details.   

 

U
of low-level elemental operations, such as shifting of 

processing focus, selection of salient locations, defining a 
region of interest, marking locations already visited, etc. 
that might be efficiently composed into visual routines, 
such as visual search, texture segregation, contour 
grouping, and in this manner extract an essentially 
unbounded variety of shape properties and spatial 
relations. A closely related procedural approach was 
proposed in [Just & Carpenter, 1976], examining visual 
tasks such as mental rotation, from a higher-level 
perspective. 

 
H
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ines which can be composed into extended behavioral 
sequences. Based on Newell’s conceptualization of 
brain’s temporal hierarchy [Newell, 1990], Hayhoe 
showed using an example of autonomous driving that the 
routines depend critically on the immediate behavioral 
context. For the same domain, visual routines such as 
traffic light detection, stop sign detection, intersection 
detection, looming detection, vehicles detection, obstacle 
detection, road detection, etc. were developed [Salgian & 
Ballard, 1998]. Rao and Ballard [Rao & Ballard, 1995] 
proposed visual routines such as object identification, 
object location identification, looming detection -- 
composing these with different parameters allows 
complex visual behaviors to be obtained. 

 
Spatial relations have been classifi

tions (e.g. north, east), distance relations (e.g. far, 
near), inclusion relations (e.g. in, at), and fuzzy relations 
(e.g. next to, close to) [Pullar & Egenhofer, 1988]. 

 
Our notion of PRs is based on a noti
po
he needs of problem solving with diagrams. These 

routines operate on interpreted images i.e. in the realm of 
what is referred to as transformation (imagery) processes 
in [Papadias & Kavouras, 1994]. Because of our interest 
in generic objects, aspects of our proposals are intended to 
be domain-independent as much as possible.  

 
7.   CONCLUSIONS 

re for representing and reas
d

erstanding and planning problems of Army interest 
have  been described in our earlier work. The focus of the 
current paper has been on the family of perceptual and 
diagram construction algorithms – or, perception and 
action routines as we have called them – that have been 
found useful in these applications. We describe their 
algorithmic basis, and characterize their computational 
complexity properties.   Research of the type reported will 
help in building practical decision support systems with 
manageable complexity. Even though they were 
motivated by Army problems, we believe that the routines 
described are applicable to diagrammatic reasoning in 
general.   While the set of such routines is open-ended, we 
think that the routines we have described will provide a 
good portion of the base set out of which more complex 
routines can be built.   
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